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Abstract

Distance oracles are data structures that provide fast
(possibly approximate) answers to shortest-path and
distance queries in graphs. The tradeoff between the
space requirements and the query time of distance
oracles is of particular interest and the main focus of
this paper. Unless stated otherwise, we assume all
graphs to be planar and undirected.

In FOCS 2001 (J. ACM 2004), Thorup intro-
duced approximate distance oracles for planar graphs
(concurrent with Klein, SODA 2002). Thorup proved
that, for any ε > 0 and for any undirected planar
graph G = (V,E) on n = |V | nodes, there exists
a (1 + ε)–approximate distance oracle using space
O(nε−1 log n) such that approximate distance queries
can be answered in time O(ε−1).

In this paper, we aim at reducing the polyno-
mial dependency on ε−1 and log n, getting the first
improvement in the query time–space tradeoff. To
simplify the statement of our bounds, we define sO(·)
to hide log log n and log(1/ε) factors.

• We provide the first oracle with a time–space
product that is subquadratic in ε−1. We obtain
an oracle with space sO(n log n) and query time
sO(ε−1).

• For unweighted graphs we show how the loga-
rithmic dependency on n can be removed. We
obtain an oracle with space sO(n) and query time
sO(ε−1). This bound also holds for graphs with
polylogarithmic average edge length, which may
be a quite reasonable assumption, e.g., for road
networks.

1 Introduction

Distance oracles [TZ05] generalize the all-pairs short-
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est paths problem as follows: instead of computing
and storing a distance matrix (using quadratic space
and pairwise distance computations with one table
look-up), we wish to compute a data structure that
requires sub-quadratic space S but still allows for effi-
cient (as in sub-linear query time Q) distance compu-
tations. Depending on the application, it may be ac-
ceptable to output approximate answers to shortest-
path and distance queries. The estimate provided by
the distance oracle is supposed to be at least as large
as the actual distance. The stretch α ≥ 1 of an ap-
proximate distance oracle is defined as the worst-case
ratio over all pairs of nodes of the query result divided
by the actual shortest-path length.

Distance oracles can potentially be used in route
planning and navigation [Gol07, Zar08, DSSW09],
Geographic Information Systems (GIS) and intelli-
gent transportation systems [JHR96], logistics, traf-
fic simulations [ZKM97, RN04, BG07], social net-
works [New01, DGNP10], and others.

Distance oracles were introduced in 2001 both for
general graphs [TZ05] and for planar graphs (Tho-
rup [Tho04] and Klein [Kle02]). For general graphs,
there have been many extensions and improve-
ments [RTZ05, MN07, MS09, BK06, BS06, BGSU08,
PR10, AG11, PR11, WN12a, PRT12, WN12b], see
e.g. [Som10, Som12] for an overview. Yet, these gen-
eral distance oracles use large amounts of space, or
they have long query time, or their stretch is at least
two [TZ05, SVY09, PR10]. In this work we consider
planar graphs, for which the known tradeoffs between
stretch, space, and query time are much better (see
Table 1 for an overview). One important reason for
better tradeoffs is that algorithms can make use of
small separators [Ung51, LT79, Mil86]. For approx-
imate distance oracles, separators consisting itself of
few shortest paths are particularly useful [Tho04,
Kle02]. For planar graphs, the best exact distance
oracles [FR06, Dji96, CX00, Cab12, Nus11, MS12]
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Space Query α dir `(e) Reference
O(n) O(n) 1 → any SSSP [HKRS97]
O(n2) O(1) 1 → any APSP
o(n2) O(1) 1 — O(1) [WN10b] (extensions in [WN10a])
O(S) Õ(n/

√
S) 1 → any [MS12] for any S ∈ [n log log n, n2]

O(n log n) Õ(
√
n) 1 → any [FR06]

O(n) O(n(1/2)+δ) 1 → any [MS12] for any constant δ > 0
O(nε−1 log2 n) sO(ε−1) 1 + ε → nO(1) [Tho04]
O(nε−1 log n) O(ε−1) 1 + ε — any [Tho04]
O(n) O(ε−2 log2 n) 1 + ε — any [KKS11]
sO(n log n) sO(ε−1) 1 + ε — any Theorem 1.1
sO(n) sO(ε−1) 1 + ε — logO(1) n Theorem 1.2

Table 1: Space and time complexities of distance oracles for undirected (—) planar graphs (some results
extend to planar digraphs (→)). sO(·) hides log log n and log(1/ε) factors. As usual, Õ(·) hides log n factors.

have a space–query time product S · Q proportional
to roughly n

√
n (similar practical methods have been

proposed [SWZ02, HSW08, DHM+09, DGPW11]).
The best approximate distance oracle is by Tho-
rup [Tho04] (experimental results in [MZ07]), where
the product S ·Q is O(nε−2 log n). Except for prepro-
cessing [Kle05], no improvements have been made in
the last decade.1 Since separator-based approaches
often use recursion of logarithmic depth, which man-
ifests itself by logarithmic factors in either the space
requirement or the query time (or even both), these
results may have been perceived as optimal (at least
in terms of n).

Contributions. Our distance oracles provide
the first improvements upon Thorup’s tradeoffs. For
undirected graphs, we obtain improvements both in
terms of n and ε, getting close to linear space, almost
without affecting query times. It is possible to reduce
the space, however, until the current work, only at the
cost of increasing the query time [KKS11]. For an
overview and comparison of existing and new results,
see Table 1.

We provide the first oracle with a space–query
time product that has a subquadratic dependency
on 1/ε (known constructions have ε−1 in both space
and query [Tho04, Kle02] or ε−2 in the query com-
plexity [KKS11]). We essentially show how to elimi-
nate the ε−1 term in the space complexity of Thorup’s
oracle — almost without increasing the query time.

Theorem 1.1. For any undirected planar graph G
on n nodes with edge lengths polynomial in n and

1Recently, Abraham, Chechik, and Gavoille [ACG12] im-
proved upon the dynamic oracle of Klein and Subrama-

nian [KS98].

for any ε > 0 there exists a (1 + ε)–approximate
distance oracle with query time sO(ε−1), using space
sO(n log n), and preprocessing time sO(nε−2 log4 n).

We further provide improved bounds for graphs
with moderate edge lengths, where by moderate we
mean that, after normalization such that the shortest
edge length is 1, the average length is bounded by
poly(log n). We believe that this is a reasonable
assumption as the average length for the European
road network (the version made available for scientific
use by the company PTV AG) appears to be not too
large.2

Theorem 1.2. For any undirected planar graph G
on n nodes with average polylogarithmic edge length
and for any ε > 0 there exists a (1 + ε)–approximate
distance oracle with query time sO(ε−1), using space
sO(n), and preprocessing time sO(nε−2 log3 n).

Previously, decreasing the space to linear
implied increasing the query time to Q =
O(ε−2 log2 n) [KKS11].

Overall Approach. Our constructions are
based on two main building blocks, both of which
are oracles that occupy only close-to-linear space:

2The network has 18,010,173 nodes and 42,560,279 edges,
covering 14 European countries, serving as an important

benchmark instance for shortest-path query methods [DGJ08].

For the travel-time metric (scc-eur2time.gr), the total length
is

P
`(e) = 21,340,824,356, which yields an average of ap-

proximately 501. For the distance metric (scc-eur2dist.gr)
the two values are

P
= 9,420,195,951 and

P
/m ≈ 221. We

do not claim to rigorously distinguish O(poly(log |E|)) from

Ω(
p
|E|) for this E (here

√
42,560,279 ≈ 6,523.82). We how-

ever observe that log2 |E| = log2(42,560,279) ≈ 25.34 and thus

(log2 |E|)2 ≥ 501.



(i) the first distance oracle with additive stretch and
(ii) an oracle with constant multiplicative stretch.
Both data structures are more compact than Tho-
rup’s original data structure. The main results above
are then obtained by combining these building blocks
in various ways.

As a first building block, we provide a distance
oracle with additive stretch, which is one of our
main technical contributions. For a graph with
diameter O(∆), and for any ε > 0, we can build an
oracle with additive stretch ε∆ using almost linear
space and almost constant query time.

Theorem 1.3. For any integer ∆, for any ε > 0,
and for any undirected planar graph on n nodes with
diameter O(∆), there is an approximate distance
oracle with additive stretch ε∆ using space sO(n) and
query time sO(ε−1). Furthermore, this distance oracle
can be computed in time sO(nε−2 log3 n).

Let us emphasize that the oracle in Theorem 1.3
works for planar graphs with arbitrary non-negative
edge lengths. In the case of graphs with such length
functions, we require that the diameter defined by the
length of the longest shortest path (as opposed to the
number of edges) is bounded by O(∆).

As a second building block, we provide a distance
oracle with constant multiplicative stretch — while
the stretch is larger than (1 + ε), the oracle is more
compact than Thorup’s oracle.

Theorem 1.4. For any undirected planar graph G
on n nodes with polylogarithmic average edge length
there exists an O(1)–approximate distance oracle with
query time sO(1), using space sO(n), and preprocessing
time O(n log3 n).

Somewhat surprisingly, nothing more efficient
than Thorup’s (1 + ε)–stretch oracle had been known
for arbitrary constant approximations. The only
O(1)–stretch (as opposed to (1 + ε)–stretch) oracle
constructions for planar graphs we are aware of are
[Che95, ACC+96, GKR04] and the following two in-
direct constructions: one construction is by using a
routing scheme [FJ89, FJ90] and another construc-
tion is by using an `∞–embedding [KLMN04]. The
space–query time tradeoff of our data structure is bet-
ter than that of all the previous constructions.

Techniques. We devise and demonstrate a
planar-graphs analog of techniques for Euclidean
settings [AGK+98, GKP95] and bounded-doubling-
dimension graphs [BGK+11], by combining two tech-
niques used by many algorithms for planar, bounded-
genus, and minor-free graphs: (i) size reduction and
(ii) diameter reduction. (i) Many exact algorithms

use recursive separators (called r–divisions [Fre87]) to
decompose the graph into pieces of size at most r. We
introduce a new kind of r–divisions based on shortest-
path separators, which may be useful to solve other
problems on structured graphs as well. (ii) Many
polynomial-time approximation schemes use tech-
niques to reduce the diameter,3 closely related to the
weak diameter decomposition [KPR93] (we use the
variant called strong diameter decomposition, or also
sparse neighborhood cover, as in [BLT07, AGMW10],
see Section 2.3). We combine both decompositions,
thereby reducing piece sizes and subgraph diameters
simultaneously — we hope that our approach has
other applications.

Some of our techniques extend to graphs with
bounded genus and to graphs excluding a fixed mi-
nor, for which (1 + ε)–approximate distance oracles
based on shortest-path separators have been found as
well [AG06, KKS11].

We note that similar bounds on space and query
time are also known for graphs with bounded dou-
bling dimension [HPM06, BGK+11] using rather dif-
ferent techniques. On a very abstract level, the point
hierarchy and the coverage properties used by Bartal
et al. [BGK+11] have some commonalities with our
approach using size reduction and diameter reduc-
tion, the actual implementation is however entirely
different and novel. We also note that the depen-
dency on ε−1 is polynomial (actually almost linear)
in our oracles, while it is often exponential for oracles
processing bounded-doubling-dimension graphs.

2 Preliminaries

We use standard terminology from graph theory,
see for example [Die05]. Graphs we consider are
undirected and planar, and they have n nodes.

Let log∗(·) denote the iterated logarithm function,
which is defined as log∗ n = 1 + log∗(log n) for n > 1
and as 0 for n ≤ 1.

2.1 Planar Separators and r–divisions. A sep-
arator for a graph G = (V,E) is a subset of the nodes
S ⊆ V such that removing the nodes in S from G
partitions the graph into at least two disconnected
components. Let us assign a weight w ∈ [0, 1] to
every node v ∈ V . A separator is deemed balanced
if none of the resulting components has weight more
than a constant fraction ρ of the total weight for some
constant ρ < 1.

3Diameter reduction by deleting or contracting subsets of

edges [Bak94, Kle08, DHK05, DHM10, DHK11] allows to
exploit the linear relationship between diameter and tree-

width [Bak94, Epp00, DH04].



Planar graphs are known to have small separa-
tors: for any planar graph there exists a balanced
separator consisting of O(

√
n) nodes [LT79, Mil86].

Recursively separating a graph into smaller compo-
nents, we obtain a division into edge-induced sub-
graphs. A node of G is a boundary node of the parti-
tion if it belongs to more than one subgraph. An r–
division [Fre87] partitions G into O(n/r) subgraphs,
called regions, each consisting of O(r) edges with at
most O(

√
r) nodes on the boundary.

Separators can be chosen, for example, to form
a cycle [Mil86] or also to form a set of paths [LT79,
Tho04]. Lipton and Tarjan [LT79] prove that, for any
spanning tree T in a triangulated planar graph, there
is a non-tree edge e such that the unique simple cycle
in T ∪{e} is a balanced separator (fundamental-cycle
separator). Thorup [Tho04] uses this construction
with a shortest-path tree T , rooted at an arbitrary
source node. For any node u, let T (u) denote the
tree path from u to the root.

Lemma 2.1. (SP Separability [Tho04, L. 2.3])
In linear time, given an undirected planar graph G
with a rooted spanning tree T and non-negative vertex
weights, we can find three vertices u, v, and w such
that each component of G \ V (T (u) ∪ T (v) ∪ T (w))
has at most half the weight of G.

Since T is a shortest-path tree, this separator S
consists of at most three shortest paths.

2.2 Approximate Distance Oracle and Label-
ing Scheme. The approximate distance oracle for
planar graphs by Thorup [Tho04] can be distributed
as a distance labeling scheme [Pel00, GKK+01,
GPPR04]. Each node u is assigned a label L(u) such
that there is a decoding function D(·, ·) that approx-
imates the distance between u and v based on their
labels only. In our data structures, we keep only a
subset of the labels to reduce the space consumption.

Lemma 2.2. ([Tho04, Theorems 3.16 and 3.19])
There is an algorithm that computes (1 + ε)–
approximate distance labels for an n–node planar
graph with the following properties. The algorithm
runs in time O(nε−2 log3 n) and outputs labels of
length O(ε−1 log n) with query time O(ε−1).

One of the key ideas for this algorithm is the
concept of shortest-path tree separability as outlined
in the previous section (Lemma 2.1). Three shortest
paths Qi separate the graph into components of
at most half the size. Another key idea is to
approximate shortest s − t paths that intersect a
separator path Q. Let the shortest s−t path intersect
Q at a particular node q ∈ Q. If we are willing

to accept a slightly longer path, we can restrict the
number of possible intersections from |Q| to O(1/ε),
for ε > 0.

We also use the following variant of Klein and
Subramanian [KS98] (which they call a crossing
substitute).

Lemma 2.3. (Crossing Substitute [KS98, L. 4])
Let Q be a path of length O(D) for an integer D.
Let C(Q) ⊆ Q be a set of O(1/ε) equally spaced
nodes on Q, called the ε–portal set of Q. Let u, v
be any two nodes at distance [D, 2D) whose shortest
path intersects Q. The distance can be approximated
using c ∈ C(Q) s.t.

d(u, v) ≤ min
c∈C(Q)

d(u, c) + d(c, v) ≤ (1 + ε)d(u, v).

The proof is based on the observation that any detour
using c ∈ C(Q) instead of q ∈ Q causes an additive
error of at most O(εD). When there is no bound
on the length of the path, there still exists an ε–
portal set of size O(1/ε), however, the portal set is
not global anymore, meaning that each node v uses
a different C(v,Q).

Lemma 2.4. ([Tho04, L. 3.4]) For any node v and
for any shortest path Q there exists a set of nodes
C(v,Q) such that, for any node q ∈ Q there exists a
portal c ∈ C(v,Q) satisfying

d(v, c) + d(c, q) ≤ (1 + ε)d(v, q).

As a consequence, for any pair of nodes (u, v) whose
shortest path intersects Q, the u-to-v distance can be
(1 + ε)–approximated by a path going through a node
cu ∈ C(u,Q) and a node cv ∈ C(v,Q), that is,

d(u, v) ≤
min

cu∈C(u,Q),cv∈C(v,Q)
d(u, cu) + d(cu, cv) + d(cv, v)

≤ (1 + ε)d(u, v).

When storing the distance from v to all its portals
c ∈ C(v,Q), we store both the distance to c ∈ C(v,Q)
and also the position (distance from the root) of c
on the path to efficiently compute d(cu, cv) for two
portals.

2.3 Strong Diameter Decomposition /
Sparse Neighborhood Cover. Busch, LaFor-
tune, and Tirthapura [BLT07] provide sparse
covers [AP90, ABCP98] for planar graphs. A con-
current and independent construction with slightly



weaker constants for planar graphs but significantly
better bounds for minor-free graphs is given by
Abraham, Gavoille, Malkhi, and Wieder [AGMW10].
Sparse covers have found numerous applications in
distributed computing.

Lemma 2.5. (Sparse Cover [BLT07]) For any
planar graph G and for any integer r, there is
a sparse cover, which is a collection of connected
subgraphs (G1, G2, . . . ), with the following properties:

• for each node v there is at least one subgraph
Gi that contains all its neighbors Nr(v) within
distance r,

• each node v is contained in at most 30 subgraphs,
and

• each subgraph has radius4 at most ρ = 24r − 8.

Furthermore, such a sparse cover can be computed in
time O(n log n).

Since each node is in Θ(1) subgraphs Gi, the to-
tal size of the cover is Θ(n). Polynomial construc-
tion time is claimed for minor-free graphs [BLT07,
AGMW10]. For planar graphs, their algorithm actu-
ally runs in O(n log n), see appendix, Section A.

2.4 Distance–δ Dominating Sets. Let δ < n be
an integer. A δ–dominating set of an unweighted,
connected graph G = (V,E) is a subset L ⊆ V of
nodes such that for each v ∈ V there is a node l ∈ L
at distance at most δ. It is well-known that there is
a δ–dominating set L of size at most |L| ≤ n/(δ + 1)
and that such a set L can be found efficiently [KP98].

2.5 FR-Dijkstra. Fakcharoenphol and Rao
[FR06, Section 4.1 (and also Sec. 2.3)] devised
an ingenious implementation of Dijkstra’s algo-
rithm [Dij59] computing a shortest-path tree of a
complete bipartite graph H1 ∪H2 in time O(h log h)
where h = |H1|+ |H2| (as opposed to O(|H1| · |H2|))
as long as the edge lengths obey the Monge property
(which more or less means that they correspond to
distances in a planar graph wherein the nodes of H1

and H2 lie on O(1) faces). We refer to this imple-
mentation as FR-Dijkstra. FR-Dijkstra can handle
multiple bipartite graphs at once. We note that, for
the particular case with just one bipartite graph,
Djidjev [Dji96] already gave an O(h log h)–time
algorithm.

4A graph has radius ρ if it contains a spanning tree of

depth ρ.

2.6 Exact Distance Oracles and Cycle MSSP.
We use the Cycle Multiple-Source Shortest Paths
(MSSP) data structure of Mozes and Sommer [MS12],
which is based on Klein’s MSSP data struc-
ture [Kle05].

Lemma 2.6. (Cycle MSSP [MS12, Theorem 4])
Given a directed planar graph G on n nodes and a
simple cycle C with c = O(

√
n) nodes, there is an

algorithm that preprocesses G in O(n log3 n) time to
produce a data structure of size O(n log log c) that can
answer the following queries in O(c log2 c log log c)
time: for a query node u, output the distance from u
to all the nodes of C.

We also use an exact distance oracle for small
subgraphs. Both data structures internally use FR-
Dijkstra.

Lemma 2.7. ([MS12, Theorem 3]) For any di-
rected planar graph G with non-negative arc lengths,
there is a data structure that supports exact distance
queries in G with the following properties: the
preprocessing time is O(n log n log log n), the space
required is O(n log log n), and the query time is
O(
√
n log2 n log log n).

3 Additive-Stretch Oracle (Theorem 1.3)

Overview. During preprocessing, we recur-
sively separate the planar graph G into at least two
pieces each with at most half the weight (Lemma 2.1).
Analogously to computing an r–division [Fre87], we
separate G in a way such that both (i) the sizes of
the resulting pieces are balanced and (ii) the bound-
ary ∂P of each piece P consists of at most a constant
number of shortest paths (see [Tho04, Section 2.5.1]
for a similar construction). We stop the separation
as soon as subgraphs have logarithmic size.

There are three types of shortest s − t paths we
need to consider.5 (1) Any shortest path between
nodes in two different pieces must intersect with a
boundary path. (2) For nodes in the same piece, the
shortest path may leave through one boundary path
and re-enter through another boundary path. (3) For
nodes in the same piece P , the shortest path may lie
entirely within P .

The third type of paths is handled by recursion.
The first two types of paths are handled as follows.
Instead of letting the s − t path intersect with any
node of the boundary, that is, any node q on a
separator path Q, we restrict the nodes on the
boundary to a set of portals, a so-called ε–portal set

5For clarity of exposition, in this analysis, we assume that

shortest paths are unique. Arguments generalize.



for each path Q (which is chosen as a set of equally-
spaced nodes C(Q) as in Lemma 2.3). Since C(Q) is
an ε–portal set, the error we introduce is bounded by
ε ·∆ (Q has length O(∆)).

The savings in space can be obtained since (i) for
each node we only need the distances to the O(ε−1)
nodes in the portal sets on the boundary as opposed
to the O(ε−1 log n) portals on all separator paths and
(ii) instead of storing these distances, we compute
them at query time using Cycle MSSP (Lemma 2.6).

Definitions. Throughout, pieces are called
P, P ′, Pi, . . . and paths are called Q,Q′, Qj , . . . . Let
∂P denote the set of separator paths on the bound-
ary of a piece P . By #∂P we denote the number of
shortest paths on the boundary of a piece P .

For a separator path Q, let C(Q) ⊆ Q denote the
ε–portal set of Q, which is a set of O(1/ε) equally-
spaced nodes on Q. We call each node c ∈ C(Q) a
portal. For any piece P , let C(P ) denote the set of
portals on its boundary, C(P ) :=

⋃
Q∈∂P C(Q).

3.1 Preprocessing Algorithm. We first com-
pute a decomposition we call shortest-path r–division
(similar to an r–division), by repeatedly using
shortest-path separators (as in Lemma 2.1). The
separator paths form a decomposition tree. Our con-
struction is similar to that of an r–division with O(1)
holes [Fre87, KS98, FR06, WN10c, KMS12] but us-
ing shortest-path separators instead of cycle separa-
tors. It is also essentially the same as in [Tho04, Sec-
tion 2.5.1]; (similar divisions in [AGK+98, GKP95]).

shortest-path-division H = (V,E)
let n = |V | ;
let the set of pieces P = {V }
let the tree of boundary paths S = {}
let T be a shortest-path tree (rooted arbitrarily)

While there is a piece P ∈ P with #∂P > 10 or
size |P | > dε−2 log ne

we compute a balanced separation with node
weights as follows:
If too many boundary paths, #∂P > 10

assign weight 1 to each endpoint of any
boundary path Q ∈ ∂P
assign weight 0 to all the remaining nodes

Else
assign weight 1 to each node

let T (u), T (v), T (w) be the 3 paths obtained by
Lemma 2.1 applied to P , weighted as above
add T (u), T (v), T (w) to set of sep. paths S
remove P from P
partition P into pieces P1, P2, . . .
add new pieces Pi to P

Claim 1. (Shortest-path separator r–division)
There is an algorithm that computes a partitioning
of the vertex set V into pieces P1, P2, . . . with the
following properties: (i) each piece Pi has size
|Pi| = O(ε−2 log n), (ii) the number of boundary
paths #∂Pi for each piece Pi is at most ten, and (iii)
the total number of pieces is at most O(nε2/ log n).

Proof. Whenever the boundary of a piece consists
of more than 10 root-paths, we separate it using
Lemma 2.1 such that the boundary paths will be
partitioned in a balanced way. Since we always
use the same shortest-path tree T , we can use the
following vertex weights: all the endpoints (leafs in
T ) of a previously selected root-path are weighted
with one and all the remaining nodes are weighted
with zero.

The third property can be proven using the
following observation. Let us track a piece P during
the execution of the preprocessing algorithm. Since
all the separator paths are taken from the same
shortest-path tree T , the number of boundary paths
#∂P increases only if P is the reason why Lemma 2.1
is invoked. A piece P ′ resulting from that invocation
can have more than 10 boundary nodes by inheriting
10 − 1 paths from P and gaining 3 paths from
Lemma 2.1. By one more invocation of Lemma 2.1,
the number of boundary paths of P ′ can be reduced to
less than 10. When the recursion stops at P ′, either
P ′ or P has size Θ(ε−2 log n). �

Then, we compute an ε–portal set for each path.
We further connect each portal node in an ε–portal
set to all the portal nodes in portal sets on higher lev-
els of the decomposition tree (we essentially compute
its distance label). Finally, we compute distances
from nodes in a piece to their portals and we store
them implicitly using the Cycle MSSP data structure.

Compared to [Tho04], the main technical differ-
ences are: (i) selective storing of distances to portals:
we store distances to portals in ε–portal sets only for
a restricted set of nodes, and (ii) global ε–portal sets:
we compute one portal set per path, as opposed to
one portal set per pair of path and node (to improve
query time and space requirements).

Our preprocessing algorithm is outlined in the
following pseudocode.

preprocess H = (V,E)
let n = |V |
let the set of pieces P = {V }
let the tree of boundary paths S = {}
let T be a shortest-path tree (rooted arbitrarily)



(P,S)← shortest-path-division(H)

(†) inter-piece approximate distance oracle
For Each separator path Q ∈ S

compute an ε–portal set C(Q) ⊆ Q
(crossing substitute, Lemma 2.3)

For Each portal c ∈ C(Q)
compute and store distances to all portals
on ancestor paths Q′ (distance label of c)

For Each piece P ∈ P and separator path Q ∈ ∂P
augment the graph induced by the piece P
with infinite edges s.t. C(Q) forms outer face
compute Cycle MSSP Data Structure for C(Q)
and this augmented graph (as in Lemma 2.6)

(†) inter-piece oracle computed

(‡) recursive call (if necessary)
For Each piece P ∈ P

If |P | > dε−2e : recurse on P
Else : compute exact oracle for P (Lem. 2.7)

Claim 2. The total space requirement per recursion
level is at most O(n log log(1/ε)).

Proof. At each recursion level, for each portal in an ε–
portal set c ∈ Q, the above algorithm stores distance
labels of size O(ε−1 log n), since, for each portal, we
store the distances to all the portals on higher levels.

By Claim 1, the total number of pieces per level is
at most O(nε2/ log n). Each piece is surrounded by
at most 10 paths on each of which we have O(1/ε)
portals. The total number of portals per level is
thus at most O(nε/ log n). Since each distance label
requires space O(ε−1 log n), the total space per level
for this step is O(n).

At each recursion level, for each node v ∈ V , the
above algorithm stores a Cycle MSSP data structure
for the portals on each boundary path (note that
we can only do so since there is one fixed portal set
per boundary path as opposed to one portal set per
pair of node and boundary path). Since the cycle
has O(1/ε) nodes, one Cycle MSSP data structure
requires space O(|P | log log(1/ε)) for a piece P (see
Lemma 2.6). By Claim 1, each piece has at most ten
boundary paths.

On the lowest level, we also store an exact
distance oracle for a planar graph on O(ε−2) nodes
(Lemma 2.7). The overall space requirement for all
these distance oracles is O(n log log(1/ε)). �

This recursive algorithm reduces the graph size
from n  log n at each level, hence the recursion
depth is at most O(log∗ n). The total space require-
ments are thus O(n log log(1/ε) log∗(n)).

3.2 Query Algorithm. The query algorithm,
given a pair of nodes u, v, returns an estimate for
dG(u, v). Compared to [Tho04], the main differences
are (i) two-way approximation: instead of approxi-
mating the distance by dG(u, q)+dQ(q, q′)+dG(q′, v)
for two portals q, q′ on a separator path, we use the
estimate dG(u, cu) + dG(cu, q) for a portal cu to ap-
proximate dG(u, q) and, analogously, for dG(q, v) (by
doing so, each node only needs to compute and en-
code distances to portals on its boundary paths as
opposed to all log n levels), and (ii) Monge search for
the optimal portal: since we have only one ε–portal
set per path, we can use the non-crossing property
as in [FR06] to compute the two-way approximation.
Let us emphasize that there is also only one ε–portal
set per path on higher levels (not just at the bound-
ary of a piece).

Let us momentarily assume that the two query
nodes u and v are in different pieces Pu and Pv,
respectively.6 Since we store distances from u to
its portal set C(Pu) (and from v to C(Pv)) during
preprocessing, we may return the minimum

min
cu∈C(Pu),cv∈C(Pv)

dG(u, cu) + d̃(cu, cv) + dG(cv, v),

where d̃(·, ·) is a (1 + ε)–approximation for dG(·, ·).
We can compute d̃(cu, cv) for the two portals cu, cv
since they have a lowest common ancestor in the sep-
arator decomposition tree consisting of at most three
shortest paths, to whose ε–portal sets we computed
and stored the shortest-path distances during prepro-
cessing.

Claim 3. The above estimate is at most 6ε∆ longer
(additive) than dG(u, v).

Proof. Any shortest path from u to v must intersect
the boundary of both pieces. Our approximation uses
at most one additional separator path (one of the
paths in the least common ancestor separator). Due
to Lemma 2.3, the additive distortion is at most 2ε∆
per path. �

Per level i, we compute the minimum
min

cu∈C(Pu),cv∈C(Pv)
dG(u, cu) + d̃(cu, cv) + dG(cv, v).

We know the distance from u to the O(1/ε) portals
cu ∈ C(Pu) on its boundary paths. We also know
the distance from these portals to the portals on the

6Even if the two query nodes are in the same piece,
it could still be that the shortest path intersects with the

separator (which consists of at most ten shortest paths). To

account for these cases, we compute the minimum among paths
intersecting with the separator (this computation is the same

as if the nodes were in different pieces). Then we recurse.



higher-level separator paths. We wish to efficiently
compute the distance from u to the portals on
the relevant separator paths — we simultaneously
compute all the relevant d̃(cu, cv) using FR-Dijkstra
(Section 2.5).

The query algorithm works as described in the
pseudocode below.

query(u, v)
return the minimum among the results from
all recursion levels:
For Each recursion level

let u ∈ Pu and v ∈ Pv
For Each pair of boundary paths
(Qu, Qv) ∈ ∂Pu × ∂Pv

determine the 3 separator paths Q1, Q2, Q3

that separate Qu from Qv (as in [Tho04])
For Each Q ∈ {Q1, Q2, Q3}

compute min
cu∈C(Qu)

d(u, q) for all q ∈ Q

simultaneously by FR-Dijkstra [FR06]
(analogously for v)
compute min

q∈Q
d(u, q) + d(q, v), keep if

it is the new minimum
at the lowest recursion level

If Pu = Pv Then
query the exact distance oracle

Claim 4. The query algorithm runs in time
O(ε−1 log2(1/ε) log log(1/ε) log∗(n)).

Proof. We compute the distances from u to
the portals on the boundary path C(Qu) us-
ing the Cycle MSSP data structure in time
O(ε−1 log2(1/ε) log log(1/ε)) (Lemma 2.6).

For each pair of boundary paths (Qu, Qv) ∈
∂Pu × ∂Pv there is a constant number of separator
paths Q on higher levels we need to consider.

Per separator path Q the FR-Dijkstra algorithm
runs in time O((|C(Qu)| + |C(Q)|) log(|C(Qu)| +
|C(Q)|)) = O(ε−1 log(1/ε)).

This search is done for all the O(log∗ n)
levels of the recursion. On the lowest level,
we also query the exact distance oracle in time
O(ε−1 log2(1/ε) log log(1/ε)) (Lemma 2.7). �

4 (1 + ε)–Stretch Oracle (Theorem 1.1)

Given the additive-stretch oracle (Theorem 1.3), the
construction is rather straightforward. Let us first
note that we may assume that ε > 1/n. If ε ≤ 1/n, no
preprocessing is required, since, at query time, we can
just run the single-source shortest paths algorithm of
Henzinger et al. [HKRS97].

Preprocessing Algorithm We use a scaling
approach. We compute sparse neighborhood covers

for r ∈
{

1, 2, 4, . . . 2i, . . .
}

and, for each resulting
graph Gij , we compute the additive-stretch oracle
of Theorem 1.3. Before computing the oracle for a
graph Gij , we slightly modify Gij by contracting all
edges e of length `(e) < r/n2. As a consequence,
each edge e occurs in at most O(log n) different
scales, independent of its length `(e). The total space
requirement is thus O(n log(n) log log(1/ε) log∗(n)) =
sO(n log n).

To enable efficient identification of the right scale
at query time, we preprocess Thorup’s distance oracle
for ε = 1/2 (any constant works) on the entire graph.
The space requirement for this step is O(n log n).

Query Algorithm Given a pair of nodes (u, v)
we query the distance oracle for constant ε to identify
the right scale i. At that scale r = 2i, we query the
additive-stretch oracles for all the graphsGij that con-
tain both nodes u, v ∈ V (Gij), and we return the min-
imum distance plus br/nc (to account for n−1 edges
that could have been contracted at preprocessing due
to their length being less than r/n2). Overall, the
query time is O(ε−1 log2(1/ε) log log(1/ε) log∗(n)) =
sO(ε−1).

5 Constant-Stretch Oracle, Polylog Lengths
(Theorem 1.4)

Towards achieving a more compact (1 + ε)–stretch
distance oracle, we first provide an O(1)–stretch dis-
tance oracle. The overall construction is then reused
to obtain the (1 + ε)–approximate distance oracle
(Section 6). The basic idea is to use distance labels
for long-range distances, which are the distances of
length at least roughly log n, and to use sparse neigh-
borhood covers (Section 2.3) for O(log log n) different
levels to approximate short-range distances.

Preprocessing Algorithm. Let ε = 0.5 (any
constant ε ∈ (0, 1/2] works). The algorithm is
described by the following pseudocode.

preprocess G = (V,E)
(i) Preparing for Long-range Queries
compute a δ–dominating set L with δ = bε−1 log nc
as in [KP98]

(for graphs with edge lengths s.t.
∑
e∈E `(e) ≤

O(n logθ n), set δ = bε−1 logθ+1 nc instead and
replace each edge e by `(e) edges before
computing the δ–dominating set)

For Each node l ∈ L
compute distance labels [Tho04] (Lemma 2.2)

For Each node v ∈ V
compute its nearest landmark node lv
(a node lv ∈ L that minimizes dG(v, lv))
store (lv, dG(v, lv))



(ii) Preparing for Short-range Queries
For every integer i > 0 with 2i ≤ d2ε−1δe

compute a sparse neighborhood cover with
radius r = 2i as in [BLT07]
let Gi = {Gij} denote this cover
For Each node v ∈ V

store list of graphs Gij ∈ Gi with v ∈ V (Gij)

Space requirements Each distance label has
size O(ε−1 log n) (see Lemma 2.2). δ was chosen such
that the space requirement for the data structure
computed in the first step is O(n). In the second step,
we iterate through O(log(ε−2 log n)) = O(log log(n)+
log(1/ε)) levels (for graphs with lengths `(e) such that∑
`(e) ≤ O(n logθ n) for a constant θ ≥ 0 we have

O(θ log log n + log(1/ε)) levels). At each level i, for
each node, we store a list of graphs Li(v) ⊆ Gi of
constant length

∣∣Li(v)
∣∣ = O(1) [BLT07]. Over all lev-

els, the space requirement is thus O(n log(ε−2 log n)).
Here we assume that identifiers of length O(log n) bits
can be stored using constant space, which is a com-
mon assumption in the word RAM model [Hag98],
which models what can be implemented using pro-
gramming languages such as C/C++.

Preprocessing time The preprocessing time is
dominated by the time required to compute the dis-
tance labels [Tho04]. The dominating set [KP98],
and the nearest landmark for each node can be com-
puted in time almost linear in n. The neighborhood
covers for O(log log n) levels can be computed in time
O(n log n) each [BLT07] (see also Section 2.3 and Sec-
tion A).

Query Algorithm. The algorithm is described
by the following pseudocode. For long-range dis-
tances, we use the labels; for short-range distances,
we find the right level using binary search.

query (u, v)
return the minimum of the following long-range and
short-range query computations
(i) Long-range Query

return dG(u, lu) + d̃G(lu, lv) + dG(lv, v), where
d̃G(·, ·) is the estimate obtained from the labels

(ii) Short-range Query
binary search for a level i such that
∃Gij ∈ Gi : u, v ∈ V (Gij)
and 6 ∃Gi−1

j′ ∈ Gi−1 : u, v ∈ V (Gi−1
j′ )

return 2ρ2i, where ρ is the constant for the
radius in Lemma 2.5 (here: ρ = 24)

Running time Computing the long-range re-
sult requires time O(1/ε). For the short-range pairs,
a binary search among O(log(ε−2 log n)) levels can
be done in time O(log log(ε−2 log n)). At each search

level we need to compute the intersection of two sets7

of constant size (recall that each node is in at most
O(1) graphs Gij per level i [BLT07]).

Stretch analysis For any pair of nodes (u, v)
at distance dG(u, v) ≥ ε−1δ = ε−2 log n, the long-
range algorithm returns a (1 + 6ε)–approximation for
dG(u, v), since, using the triangle inequality,

dG(u, v) ≤ dG(u, lu) + d̃G(lu, lv) + dG(lv, v)
≤ δ + (1 + ε)dG(lu, lv) + δ

≤ δ + (1 + ε)(δ + dG(u, v) + δ) + δ

≤ (1 + ε)dG(u, v) + (4 + 2ε)δ.

For nodes at distance dG(u, v) < ε−1δ, the short-
range algorithm returns a 4ρ–approximation (recall
that ρ is the constant for the radius in [BLT07]). The
graph Gij with u, v ∈ V (Gij) at level i is a certificate
that dG(u, v) ≤ 2ρ2i. Since there is no graph Gi−1

j′

with u, v ∈ V (Gi−1
j′ ) at level i−1, the u-to-v distance

satisfies dG(u, v) > 2i−1.

6 (1 + ε)–Stretch Oracle, Polylog Lengths
(Theorem 1.2)

The construction of the distance oracle presented in
this section is based on the construction in Section 5.

The constant-stretch distance oracle uses a very
crude estimate for short-range query pairs: if two
nodes are contained in the same graph Gij with
diameter O(2i) but they are not together in a graph
at level i− 1, they must be at distance Θ(2i) (O(2i)
due to the diameter of Gij and Ω(2i) since the two
nodes were not together in any graph at level i− 1).
In the following, we use a more precise estimate for
pairs of nodes at distance Θ(2i), using the additive-
stretch distance oracle8 as in Theorem 1.3 for the
level graphs Gij .

Preprocessing Algorithm We run the pre-
processing algorithm of Section 5 with ε being

7Efficient set intersection is closely related to distance
oracles and conjectured to require Ω(n2) space [PR10]. Here,

our sets have constant size, allowing for trivially efficient
queries.

8We are aware of exact oracles for planar graphs that can

answer bounded-length distance queries, which are distance

queries for pairs at constant distance. For planar graphs,
Kowalik and Kurowski [KK06] provide such a distance oracle

that uses linear space (see [DKT10] for an extension to sparse
graphs). However, we cannot use their data structures, since
the query time of their oracles is exponential in the length.

In our oracle, short distances may be up to logarithmic in n.

Another approach would be to use a distance oracle for planar
graphs with bounded tree-width (see [MS12]): since diameter

Θ(2i) implies tree-width w = O(2i) [Epp00, DH04], the query
time can be made almost proportional to w. However, here we

aim at query time almost proportional to 1/ε instead.



the actual value chosen by the application di-
vided by a small constant (six suffices). For
each level 2i, for each graph Gij , we com-
pute the additive-stretch oracle as in Theo-
rem 1.3. The total space requirement per level is
O(n [log log(n) + log(1/ε)] log∗(n) log log(1/ε)). The
preprocessing time depends on the time required to
compute the sparse neighborhood covers, since, for
each level 2i, we compute a sparse neighborhood
cover and the additive-stretch oracle in each sub-
graph (which dominates the preprocessing time, The-
orem 1.3).

Query Algorithm We use the query algorithm
of Section 5 with the following adaptation. After the
binary search for the lowest level 2i with a graph Gij
that contains both u and v, we compute the result
of the additive-stretch oracle for this level and also
for the dlog2(2ρ)e levels above (ρ again denotes the
radius in Lemma 2.5). The reason for this is that u
and v may be in Gij at level 2i but u and v may be
at distance c2i for some c ∈ [1, 2ρ]. At a lower level,
it is not guaranteed that Gij actually contains an ap-
proximate shortest path. Since ρ = O(1), the query
time is at most O(ε−1 log2(1/ε) log log(1/ε) log∗(n) +
log log log(n)).

7 Conclusion

Our (1 + ε)–approximate distance oracle for planar
graphs has a better space–query time tradeoff — both
in terms of n and ε — than previous oracles. In
previous work [KKS11], reducing the space to linear
caused the query time to increase, in this work it does
not.

The improved tradeoff currently comes at a cost:
the oracle cannot be distributed as a labeling scheme.
However, it seems reasonable that such a shortcoming
may actually be necessary: it is questionable whether
o(log2 n)–bits approximate distance labels for planar
graphs exist at all. For s–approximate distance
labels (constant s > 1) of graphs as simple as
trees (with edge lengths) there is a lower bound of
Ω(log n log log n) bits on the label length [GKK+01].
As a consequence, our data structure cannot possibly
be distributed as approximate distance labels (at
least for graphs with edge lengths). Obviously,
distance labels for planar graphs must be at least as
long as those for trees — surprisingly enough they
are not much longer.
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A Computing Sparse Neighborhood Covers
of Planar Graphs

The algorithm of Busch, LaFortune, and Tirtha-
pura [BLT07], computing a sparse neighborhood
cover for some neighborhood radius r, runs in time
O(n log n) for planar graphs.

The algorithm essentially recursively (O(log n)
levels) separates G using shortest-path separators.
Each of these separators can be found in linear
time [LT79, Tho04]. Per level, the algorithm com-
putes covers around these separator paths in a sub-
graph H. The sum of the nodes in all the subgraphs
H of a level is at most |V (G)| = n.

Per subgraph H, the algorithm spends time
O(|V (H)|) as follows. We first find three separator
paths Q1, Q2, Q3 in time linear in O(|V (H)|) [LT79,
Tho04]. Each separator path Qi is then decomposed
into overlapping segments of length 2r. A cluster
around a segment Qji is found by breadth-first search,
exploring the 2r–neighborhood of Qji . Since each
node v is in at most 3 clusters per path Q, v and
the edges adjacent to v take part in at most 3 · 3
breadth-first searches per level.

In combination with algorithms of Rao [Rao87,
Rao92] it may be possible to derive an Õ(n)–time al-
gorithm that computes a constant-factor approxima-
tion for SparsestCut (uniform weights) in planar
graphs.



Extension to Bounded-Genus Graphs. Note
that the constructions of Busch, LaFortune, and
Tirthapura [BLT07] can be extended to bounded-
genus graphs using a result of Eppstein [Epp03].

Proposition A.1. For any graph G embedded into
a surface of genus g and for any integer r, there
is a sparse cover, which is a collection of connected
subgraphs (G1, G2, . . . ), with the following properties:
(i) for each node v there is at least one subgraph Gi
that contains all neighbors within distance r, (ii) each
node v is contained in at most 2g+30 subgraphs, and
(iii) each subgraph has radius at most ρ = 24r − 8.
Furthermore, given the embedding of G, such a sparse
cover can be computed in time O(gn log n).

Up to constants, this result is implied by the results
in [AGMW10] — when using the result for minor-free
graphs, the dependency on g would however become
exponential as opposed to linear.

Proof. On a high level, the algorithm is actually
rather simple, using existing subroutines as follows.

1. Following Eppstein’s tree–cotree decomposi-
tion [Epp03], compute the top-level 2g paths
(call this set Q) in the shortest-path separators
of Kawarabayashi, Klein, and Sommer [KKS11].

2. Compute covers for (“satisfy” the nodes on) each
of these O(g) paths Q ∈ Q (using the algorithm
ShortestPathCluster of Busch, LaFortune,
and Tirthapura [BLT07, Algorithm 1]),

3. Cut along each of these paths Q ∈ Q; the
resulting graphs are planar (see [Epp03]).

4. Compute covers for each of the remaining planar
graphs (using the algorithm PlanarCover of
Busch et al. [BLT07, Algorithm 5]).

5. Output the union of (2) and (4). �
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