
University of Tokyo: Advanced Algorithms Summer 2010

Lecture 8 — 10 June

Lecturer: Christian Sommer Scribe: Florian Wagner

8.1 Graph Representation in Memory

There are several possibilities to represent a graph G = (V, E) in memory. Let the set of
nodes be V = {1, 2, . . . , n} with edges E ⊆ V × V , and let m := |E|.

1

6

2

5

3

4

1. Adjacency matrix

The adjacency matrix of a graph G = (V, E) is a |V | × |V | matrix A, where each entry
aij is equal to 1 if there exists an edge e = (vi, vj) ∈ E and 0 otherwise. In case a
weight function w : E → R is given, then aij = w

(
vi, vj

)
.

The adjacency matrix of the graph depicted above is

A =


0 1 0 0 0 1
1 0 1 1 1 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0

 .

Note that, since the graph in the example is undirected, the resulting matrix is sym-
metric. Also, since there are no self loops, each entry in the main diagonal is zero.

2. Edge List

In an edge list L, every edge e is stored as a tuple (vi, vj) in a sorted list. The edge
list of the graph depicted above is:

L =
{

(1, 2), (1, 6), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5), (5, 6)
}

While being a space-efficient way to store the graph, the access times of an edge list
are slower than the access times of an adjacency matrix (for most edges).

8-1



3. Adjacency List

An adjacency list is similar to an edge list: for each node a sorted list of adjacent
nodes (also termed neighbors) is stored. Likewise, this is an efficient way to represent
a graph but the access times are slower compared to a matrix (O(lg n) compared to
O(1)). One way to solve this issue is to use a hash table for each node, containing all
its neighbors.

The adjacency list for the example graph is:

Node Neighbors
1 {2, 6}
2 {1, 3, 4, 5}
3 {2, 4}
4 {2, 3, 5}
5 {2, 4, 6}
6 {1, 5}

Remark. The optimal representation depends on the type of the graph. For instance, a
matrix wastes a lot of memory if a sparse graph is given, but it has optimal access times for
any type of graph.

8.2 Shortest Path Problems

In this section the problems of finding paths p = 〈v1, v2, . . .〉 and distances d(vstart, vend)
between vertex pairs will be discussed. The problems can be divided into three categories:

1. Single source shortest path problem: Find the shortest path from a given source
s ∈ V to all other nodes v ∈ V . For unweighted graphs, this problem can be solved
using breadth-first-search in time O(m).

2. All pairs shortest path problem: Find the shortest path for all pairs (u, v) ∈ V ×V .
Since an all-pairs shortest paths algorithm must output all the pair-wise distances, the
running time is at least Ω(n2). If the actual paths need to be output explicitly, the
running time increases to Ω(n3).

The second lower bound follows from a graph on n nodes as in the picture below. We
first divide the set of nodes into two sets with n

3
nodes each and a path with another

n
3

nodes. For at least n2

9
pairs, any shortest path uses at least n

3
edges.

8-2



n
3

nodes n
3

nodes

V1 ⊂ V V2 ⊂ V

n
3

nodes

3. All pairs shortest distances: Compute the distances d (instead of the whole path)
for all pairs (u, v) ∈ V × V . In many scenarios a weight function (such as distance,
time, or cost) is provided: w : E → R. In the following, we mainly consider unweighted
graphs (all weights are 1). For these graphs and for a single source, breadth-first search
(BFS) can be applied. The running time is O(m) for SSSP and O(mn) for APSP.

For sparse graphs (m = O(n) edges), this is an optimal solution. In the following,
methods for dense graphs will be discussed.

Definition The weight of a path p = 〈v0, v1, ..., vk〉 is defined as

w(p) =
k∑

i=1

w(vi−1, vi)

First, the well-known Floyd-Warshall algorithm is presented. Second, a more advanced
algorithm by Seidel [Sei95] is explained.

8.3 Floyd-Warshall Algorithm

This algorithm can handle negative weights where negative cycles are not allowed. Below,
the matrix A is an adjacency matrix A with entries aij and matrix D is a distance matrix
with entries dij that contain the distances of the shortest path between each pair of nodes i
and j.

Observation. We define matrices D(k) (for integers k) as intermediate results. Each entry

d
(k)
ij contains the weight of the shortest path from i to j, such that all intermediate nodes

are in the set {1, 2, . . . , k}. The entries of D(0) are initialized as follows:

d
(0)
ij =


aij if aij > 0 i.e. (vi, vj) ∈ E
0 if i = j
∞ otherwise

8-3



Starting with this matrix, the algorithm computes the matrices D(0) for k = 1, 2, . . . , n as
follows:

d
(k)

ij = min
(

d
(k−1)
ij︸ ︷︷ ︸

not using

node k

, d
(k−1)
ik + d

(k−1)
kj︸ ︷︷ ︸

using node k

)

Either by adding the node k to the set of possible intermediate nodes the distances do not
change

(
d

(k)
ij = d

(k−1)
ij

)
or a shorter path from i through k to j exists.

Algorithm 1: Floyd-Warshall algorithm

Input: Adjacency matrix A (=: D(0))
Output: D(n)

for k ← 1 to n do1

for i← 1 to n do2

for j ← 1 to n do3

d
(k)

ij ← min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj )4

end5

end6

end7

The running time of the Floyd-Warshall algorithm (Algorithm 1) is Θ(n3), due to its three
nested loops. An important observation is that the structure of the algorithm is similar to
matrix multiplication. In the following, the problem of computing the APSP problem will
be reduced to multiplying two integer matrices.

8.4 Floyd-Warshall vs. Matrix Multiplication

Two matrices A and B are multiplied, in this particular case square matrices n × n, by
multiplying each row vector of the first matrix with each column vector of the second matrix:

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55




b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55




=

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 c43 c44 c45

c51 c52 c53 c54 c55




The resulting matrix C with entries cij is calculated as follows:

C = AB

8-4



⇒ cij =
n∑

k=1

aik · bkj

The formula for the product of two boolean matrices A and B is the following:

C = A ·B

⇒ cij =
n∨

k=1

aik ∧ bkj

Finally, as seen in the Floyd-Warshall algorithm, for calculating the distance matrix, a
“distance product” is used:

C = A⊗B

⇒ cij = min
k∈{1..n}

(
aik + bkj

)
These similarities indicate that the all-pairs shortest paths problem and the integer matrix
multiplication problem are somewhat related. In the following, we use fast integer matrix
multiplication to obtain a faster algorithm for the all-pairs shortest paths problem. Matrix
multiplication implemented with three nested loops runs in time O(n3). The more sophisti-
cated algorithm by Strassen [Str69] runs in time O(nlog2 7). Currently, the fastest algorithm
(by Coppersmith and Winograd [CW87]) runs in time O(nω) for ω = 2.376. Note that any
algorithm that multiplies two n× n integer matrices must have ω ≥ 2.

8.5 Seidel’s Algorithm

Seidel’s APSP algorithm [Sei95] is based on fast integer matrix multiplication. His algorithm
can be used for unweighted, undirected graphs.

8.5.1 All Pairs Distances

We begin with an outline of Seidel’s algorithm (see Algorithm 2).

8-5



Algorithm 2: Seidel’s Algorithm (All Pairs Distances)

function APD(A)1

begin2

Z ← AA3

let B be a boolean matrix with bij ←
{

1 if i 6= j and
(
aij = 1 or zij > 0

)
0 otherwise4

if ∀i, j . i 6= j ⇒ bij = 1 then5

return D ← 2B − A6

end7

else8

T ← APD(B)9

X ← TA10

return D with dij ←
{

2tij if xij ≥ tij · deg(j)
2tij − 1 otherwise11

end12

end13

In the following, we explain how Algorithm 2 works using the example graph from above.
At the beginning, the algorithm computes the square graph. Following one edge in the square
graph amounts to following a path of length one or two in the original graph. In order to
obtain the adjacency matrix of the square graph, first, the matrix A is squared (one matrix
multiplication) and stored into Z in line 3. The graph and the matrix for the example are:

1

6

2

5

3

4

Z = AA =


0 1 0 0 0 1
1 0 1 1 1 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0




0 1 0 0 0 1
1 0 1 1 1 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0

 =


2 0 1 1 2 0
0 4 1 2 1 2
1 1 2 1 2 0
1 2 1 3 1 1
2 1 2 1 3 0
0 2 0 1 0 2


The value of zij indicates the number of distinct paths between i and j of length 2. Second,
the matrix B (the adjacency matrix of the square graph) is calculated in line 4, having a 1
in each entry if the nodes are either directly connected by an edge or if there is at least one

8-6



path of length two between these two nodes. For the example, B is:

B =


0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 0 1 1
1 1 1 1 0 1
1 1 0 1 1 0


Apart from the entries of the main diagonal, only b36 and b63 are 0. Note that there is indeed
no path of length one or two between nodes 3 and 6 of the graph.

Next, if all the entries of B (except for the diagonal) are 1, then all pairs of nodes in the
graph defined by A are connected by a path of length at most 2. It remains to distinguish
pairs for which the distance is 1 from pairs for which the distance is 2. B is multiplied by
2 and A is subtracted (line 6). This way, if the path has length 2, then the entry in A is 0
and the resulting value will be 2. Otherwise, the value of A will be subtracted, yielding 1
for this entry.

Otherwise, the algorithm is called recursively on matrix B in line 9. In the recursive
call, the algorithm starts with the square graph, computes the square of the square graph,
etc. Let us get back to our example. We use subscript 2 for the names of the matrices in
the recursive call. The matrix A2 = B is squared:

Z2 = A2A2 = BB =


5 4 3 4 4 3
4 5 3 4 4 3
3 3 4 3 3 4
4 4 3 5 4 3
4 4 3 4 5 3
3 3 4 3 3 4


Next, B2 is computed:

B2 =


0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0


This time, all the entries of B2 are 1, except for the main diagonal. That is, the matrix
describes a complete graph Kn:

1

6

2

5

3

4

8-7



The recursion ends, B2 is multiplied by 2 and A2 = B is subtracted. The resulting matrix
is returned to the first call of the function and stored in T :

T =


0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 2
1 1 1 0 1 1
1 1 1 1 0 1
1 1 2 1 1 0


Note that, according to T , the distance from node 3 to node 6 is 2, meaning that, since T
corresponds to the distance in the square graph, the distance could be either 4 or also (like
in this example) 3. It remains to distinguish two cases: whether the actual distance from
node i to node j is 2tij or 2tij − 1. In order to distinguish these two cases, the matrix T is
multiplied with A and stored in X:

X = AT =


0 1 0 0 0 1
1 0 1 1 1 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0




0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 2
1 1 1 0 1 1
1 1 1 1 0 1
1 1 2 1 1 0

 =


2 3 2 3 3 1
1 4 1 2 2 2
3 3 2 2 4 2
2 3 1 3 2 2
2 3 2 2 3 1
1 5 2 4 2 2


Finally, in line 11 the resulting matrix D is returned, containing, for each of its entries, either
the original value or the decrement of it. The following four propositions shall explain this
formula.

Proposition 8.1. If the distance dij is even, the resulting distance is 2tij and 2tij − 1
otherwise.

Proof: If dij is even, i.e. dij = 2s and the shortest path is 〈v0, v1, . . . , v2s〉 then the path
〈v0, v2, v4, . . . , v2s−2, v2s〉 is the shortest path in the modified graph resulting from the square
matrix. If the distance dij is odd, i.e. dij = 2s − 1, then the shortest path in the modified
graph is 〈v0, v2, v4, . . . , v2s−4, v2s−2, v2s−1〉. �

Next a trivial claim:

Proposition 8.2. Let i and j be a pair of distinct vertices in G. For any neighbor k of j,
we have

dij − 1 ≤ dik ≤ dij + 1

Proof: By taking one step the distance can only change by 1 or it remains the same,
depending on whether the neighbor k is the first node on a shortest path from i to j or not
(see figure below).

8-8



i

k j

j

�

Furthermore, there exists a neighbor k of i such that dik = dij − 1

Proposition 8.3.

dij is even → tik ≥ tij for all neighbors k of j

dij is odd → tik ≤ tij for all neighbors k of j, and

tik < tij for at least one neighbor k of j

Proof: If dij is even, i.e. dij = 2l, then tij = l. There also exists a k such that dkj ≥ 2l− 1.

tkj ≥
dkj

2
≥ l − 1

2

Distances are integral, so tkj ≥ tij. The proof for an odd dij is analogous. �

Proposition 8.4. Let Γ(i) be the set of neighbors of node i.∑
k∈Γ(i)

tkj ≥ tij deg(i) → dij is even

∑
k∈Γ(i)

tkj < tij deg(i) → dij is odd

Thus, the resulting matrix D for this example is:

D =


0 1 2 2 2 1
1 0 1 1 1 2
2 1 0 1 2 3
2 1 1 0 1 2
2 1 2 1 0 1
1 2 3 2 1 0


In an unweighted, connected graph, the maximum distance is at most n. In each recursive call
of Seidel’s algorithm, distances are doubled. The recursion depth is thus at most logarithmic
in n. Therefore, the total running time is the required time to multiply two integer matrices,
multiplied by O(log n).

8-9



8.5.2 All Pairs Shortest Paths

In the following we discuss how to retrieve the actual paths. While Algorithm 2 tells us the
distance, we do not know which neighbor to “use” without potentially inspecting all of them.
In the Floyd-Warshall algorithm, these intermediate nodes were computed as a side product.
In Seidel’s algorithm, we need to compute them. The intermediate nodes “witness” that the
shortest path distance in the distance matrix is correct. In the following, we will compute
these “witnesses.”

Note that when the adjacency matrix A is multiplied with itself (Z = AA as in line 3),
then the entry zij =

∑
k aikbkj contains the number of paths from i to j with length 2.

Instead, we would like to know one of these neighbors k between node i and node j. More
precisely, we wish to compute a “witness” for each non-zero entry of the boolean product
matrix C

cij =
n∨

k=1

aik ∧ bkj.

We will now discuss a randomized algorithm to calculate a boolean product witness
matrix. Again, instead of computing the boolean product matrix and the corresponding
witnesses using the explicit formula (which requires cubic time), we wish to apply fast integer
matrix multiplication.

Reminder:

AB = C cij =
n∑

k=1

aik · bkj (8.1)

A ·B = C cij =
n∨

k=1

aik ∧ bkj (8.2)

For the boolean product matrix C := A · B, if cij is 1, then there must be some values k
for which aik ∧ bkj is 1 — the goal is to find one of these k as a witness. The values cij of
the integer product matrix (equation 8.1) “count” the number of witnesses; if both aik and
bkj equal 1 then the value of cij increases by 1. By multiplying column k of matrix A by a
factor k, the value cij of the integer product matrix increases by k if both aik and bkj are 1:

c̄ij =
n∑

k=1

k · aik · bkj

If there is just one witness k (meaning a pair (aik, bkj)), then c̄ij = k and we have found
a witness. However, since there may be more than one witness k for a path from i to j,
c̄ij is not necessarily equal to a witness k. At this point, we use randomization. Instead
of summing over all values k ∈ {1, 2, . . . n}, we sum over random subsets of various sizes
k ∈ {k1, k2, . . . kd}:

c̄ij =
n∑

k∈{k1,k2,...kd}

k · aik · bkj

8-10



In some sense, the algorithm tries to “hit” exactly one witness. The sizes d of the random
subsets {k1, k2, . . . kd} are in {1, 2, 4, 8, . . . }. If for an entry cij there are “many” witnesses
k, then small values of d are likely to “produce” a witness. If there are only “few” witnesses,
then large values of d are likely to “produce” a witness.

Algorithm 3: Seidel’s Algorithm (Boolean Product Witness Matrix)

Input: Matrices A, B
function BPWM(A, B)1

begin2

let W = −AB (witness matrix)3

for l← 0 to lg n do4

d← 2l
5

repeat ln n times6

begin7

choose d random numbers k1, k2, . . . , kd from {1, 2, . . . , n}8

let X be the n× d matrix with columns ki · aki
9

let Y be the d× n matrix with rows bki
10

C ← XY11

update wij ← cij if cij is a witness12

end13

end14

foreach (i, j) s.t. wij < 0 do15

wij := some witness k for (i, j), computed by trying each k16

end17

return W18

end19

In lines 9 and 10 the matrices X and Y are computed, where:

k1 k2 · · ·
0 0 · · ·
k1 0 · · ·
k1 k2 · · ·
0 0 · · ·
k1 0 · · ·
...

...
. . .


︸ ︷︷ ︸

d

1 0 1 0 0 1 · · ·
1 0 0 1 0 1 · · ·
...

...
...

...
...

...
. . .


 d =

g11 g12 · · ·
g21 g22 · · ·
...

...
. . .


︸ ︷︷ ︸

n

n

In line 15 the algorithm computes a witness for those pairs for which the randomized
procedure was not successfull. We iterate over all pairs (i, j) and if no witness has been
found so far, then all the values for k ∈ {1, . . . n} are tested.

This algorithm is a Las Vegas algorithm with expected running time O
(
nω log2 n

)
[Sei95,

Theorem 3].

8-11



Example

Matrices A and B:

A =


0 1 0 0 0 1
1 0 1 1 1 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0

 B =


0 0 1 1 1 0
0 0 0 0 0 1
1 0 0 0 1 0
1 0 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0


In the second iteration, we have l = 1 and therefore d = 2 (line 5). Next, let k1 = 3 and let
k2 = 4. The matrices X and Y are:

X =


0 0
3 4
0 4
3 0
0 4
0 0

 Y =


1 0 0 0 1 0
1 0 0 0 0 1


The resulting matrix C is:

C = XY =

0 0 0 0 0 0

7 0 0 0 3 4

4 0 0 0 0 4

3 0 0 0 3 0

4 0 0 0 0 4

0 0 0 0 0 0




For entry c25 we found a witness. For entry c21 we were “unlucky”: two witnesses were

“hit” and their sum does not tell us anything.
In the following, we give a lower bound on the probability that we find a witness for

cij. Let i and j be fixed. A witness wij is found if there is exactly one witness amoung
k1, k2, . . . , kd. Let c = cij. Look at the iterations for which d satisfies:

n

2
≤ cd ≤ n

Since there are c witnesses, the probability that ki “hits” a witness k is c/n. The probability
that exactly one witness is “hit” is at least

d
c

n

(
1− c

n

)d−1

≥ 1

2

(
1− 1

d

)d−1

>
1

2e
.

For each value of d, the algorithm chooses ln n random subsets of size d. The probability that
in ln n rounds no witness is found is proportional to 1/n. The expected number of pairs (i, j)
for which no witness is found is thus at most O(n). For each of these pairs, a brute-force

8-12



linear-time algorithm eventually finds a witness. The expected total running time of this
final step is thus bounded by O(n2).

For the combination of the BPWM and APD algorithms we refer to [Sei95, Algorithm
APSP, page 402].

8-13



Bibliography

[CW87] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. In STOC ’87: Proceedings of the nineteenth annual ACM symposium
on Theory of computing, pages 1–6, New York, NY, USA, 1987. ACM.

[Sei95] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected
graphs. J. Comput. Syst. Sci., 51(3):400–403, 1995.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356,
1969.

14


