
University of Tokyo: Advanced Algorithms Summer 2010

Lecture 7 — 3rd June

Lecturer: Christian Sommer Scribe: Tatiana V. Martsinkevich

Recall that a graph G = (V, E) is a discrete object that consists of a set of vertices V

and a set of edges E. Each edge connects two vertices, E ⊆
(

V
2

)
. Let n = |V | denote the

number of vertices. Then, |E| ≤
(

n
2

)
= O(n2).

In this lecture we also consider multigraphs, wherein there can be multiple edges between
any two vertices. The number of edges of a multigraph is not necessarily bounded by O(n2).

7.1 The MinCut Problem and a Solution

The MinCut problem is to partition the vertex set of a graph G = (V, E) into two sets
S ⊆ V and S̄ := V \ S such that the number of edges between S and S̄ is minimized, more
formally,

min
S
|E(S, S̄)|, where E(S, T) := {(u, v) ∈ E : u ∈ S ∧ v ∈ T}.

There is a simple randomized algorithm that contracts an edge at each step until only two
nodes are left (see Algorithm 1 or the lecture notes of the first lecture, see also Figure 7.1 for
an example; the algorithm is by Karger and Stein [KS96, Section 2]). Recall that contracting
an edge (u, v) amounts to “identifying” its endpoints u and v in a new vertex uv that is
adjacent to all the neighbors of both u and v.

Algorithm 1 MinCutRand(G = (V, E))

while |V | ≥ 2 do
pick an edge e uniformly at random
contract e: combine nodes, keep multi-edges, remove loops

end while
return cut

The main loop of Algorithm 1 is executed O(n) times. Choosing an edge and contracting
it requires time O(n). Algorithm 1 thus runs in time O(n2) [KS96, Corollary 3.2.1].

7.2 Success Probability of MinCutRand

Let OPT(G) := min
S
|E(S, S̄)|. If OPT(G) = k, then the degree of each node v ∈ V is at

least deg(v) ≥ k and thus the total number of edges is at least |E| ≥ kn
2

. In the following,

7-1

b

ua

c v

d ⇒

b

uva

c

d ⇒

a cb

d uv

Figure 7.1. An example of contracting edges of a 6–nodes graph. The edge that is to be contracted in the
next step is indicated by a dashed line.

we derive an estimate of the probability that the algorithm contracts an edge that belongs
to a particular minimum cut. For the analysis, we first fix an arbitrary minimum cut. We
call the edges outside this cut “good” and we call the edges that belong to this cut “bad”
(we hope to avoid “bad” edges for contraction).

Notation: For a graph G = (V, E) and an edge e ∈ E, we write G/e to denote the graph
obtained from G by contracting e.

Lemma 7.1. OPT(G) ≤ OPT(G/e). �

After t iterations of the algorithm, n− t + 1 nodes are left. Since each node has degree
at least k, at least k(n−t+1)

2
edges are left. The probability that a “bad” edge is chosen next

for contraction is

Pr[“bad” edge] =
/k2

/k(n− t + 1)
.

The probability that a “good” edge is chosen is

Pr[“good” edge] = 1− 2

(n− t + 1)
.

The probability to obtain the minimum cut we fixed at the beginning is thus

n−2∏
t=1

(
1− 2

n− t + 1

)
=

n−2∏
t=1

n− t + 1− 2

n− t + 1
=

/////n− 2

n
· /////n− 3

n− 1
· /////n− 4

/////n− 2
· . . . · 2

/4
· 1
/3

=
1(
n
2

) = Ω

(
1

n2

)
.

In order to obtain a minimum cut with constant probability, we need to repeat Algo-
rithm 1 roughly

(
n
2

)
times. The resulting time complexity is thus O(n4 log n) (log factor to

increase the success probability to 1 − 1/n). In the following, we discuss how to improve
upon this complexity.

7-2

7.3 Improvements upon MinCutRand

Note that during the first couple of executions of the main loop of Algorithm 1, the prob-
ability of choosing a “bad” edge is quite low; the probability of choosing a “bad” edge is
rather high during the final stages of the execution.

7.3.1 Switch to a Deterministic Strategy

Idea: choose edges at random and contract them for the first n−r rounds only; thereafter,
instead of executing another r rounds, run a deterministic algorithm (returning the optimal
result for this contracted graph on r nodes)

Let r denote the number of remaining nodes. The probability that none of the edges of
a particular minimum cut (the “bad” edges) are contracted until r nodes are left is(

r
2

)(
n
2

) = Ω

(
r2

n2

)
.

Repeating this new algorithm n2/r2 times yields constant success probability. Executing
the first n − r rounds requires time O(n2). For graphs on r nodes, there is a deterministic
algorithm that runs in time Õ(r3) [NI92]. The running time is thus roughly (up to constant
and logarithmic factors)

n2

r2

(
n2 + r3

)
.

By setting r := n2/3, we obtain a running time of Õ(n8/3) — beating the cubic-time
deterministic algorithm. The idea described in the next section helps to improve the running
time even further.

7.3.2 “Re-use” Computations

Idea: instead of repeating the whole algorithm (Algorithm 1) for n2 times, “re-use” the
results achieved by earlier rounds (these results are correct with rather high probability) and
repeat later rounds only (see also [KS96, Section 4])

Similar to the idea of Section 7.3.1, we contract the graph until r nodes are left. The
probability of not contracting a single “bad” edge is r2/n2. Instead of running this con-
traction step only once, the idea is to run these n − r contraction steps on approximately
n2/r2 independent copies of the graph and then to recurse separately on each of these (see
Algorithm 2). We set r := |V |/2 and we run the contraction steps (the While part) on four
independent copies.

Lemma 7.2 ([KS96, Lemma 4.1]). For a graph with n nodes, the running time of Algo-
rithm 2 is bounded by O(n2 log n).

7-3

Algorithm 2 MinCutRand’(G = (V, E))

r := |V |
2

if |V | ≤ 8 then
return optimal minimum cut of G

end if
for four independent copies of G, say H1, H2, H3, and H4, do

while |Vi| ≥ r do
pick an edge e uniformly at random
contract e: combine nodes, keep multi-edges, remove loops

end while
end for
recurse with these four contracted graphs H1, H2, H3, and H4

return mini MinCutRand’(Hi)

Proof: We give a recursive formula for the running time T (n):

T (n) = O(n2) + 4 · T
(n

2

)
︸ ︷︷ ︸
recursive part

= O(n2 log n).

�

Lemma 7.3 ([KS96, Lemma 4.3]). For a graph with n nodes, the success probability

P (n) of Algorithm 2 is P (n) = Ω
(

1
log n

)
.

Proof: We give a recursive formula for the success probability:

P (n) ≥ 1−
(

1− 1

4
P (n/2)

)4

︸ ︷︷ ︸
failure probability

≥ P (n/2)

(
1− 3

8
P (n/2)

)
.

�

In order to reach a success probability of 1− 1/n, the algorithm can be repeated O(log2 n)
times. The overall running time of this new recursive algorithm is Õ(n2) (as opposed to
Õ(n4) of Algorithm 1).

7-4

Bibliography

[KS96] David R. Karger and Clifford Stein. A new approach to the minimum cut problem.
J. ACM, 43(4):601–640, 1996.

[NI92] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multi-
graphs and capacitated graphs. SIAM J. Discret. Math., 5(1):54–66, 1992.

5

